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In his invesrigati~ns on stability of motion Liapunov f l] proceeded with Lagrange’s equ- 

ations in independent determining coordinates which describe the motion of holonomic 

systems. It is known that Liapunov’s theory of stability, developed through the efforts of 

many scientists, achieved great sucess [ 2 J. At the same time the problem of stability of 

motion of nonhoionomic systems has been developed insufficiently, even though starting 

with the work of Whittaker [ c( ‘j and Bottema [4] a fairly large amount of literature is 
devoted to this subject; in particular the problem of stability of equilibrium under the 

action of potential forces is almost completely uninvestigated. In many papers on stab- 
ity of nonholonomic systems not only a unified approach to the problem is absent, but 
frequently also inconsistencies in the method of investigation and even in results are 

encountered (for more details see introduction to paper [Sj. Yet, problems of stability 

for nonholonomic systems have the character of problems of conditional stability in the 

sense of Liapunov. This circumstance was apparently first noted by Chetaev (page 384. 

r2]). 
In this paper, after presentation of the general formulation of the problem, the quest- 

ion of stability and instability of equilibrium in nonholonomic systems under the action 

of potential forces is studied. In particular the conditions for applicability of Lagrange’s 

theorem on stability of equilibrium arc elucidated. The effect of dissipative forces on 

stability of equilibrium in nonhoIonomtc ~ysrems is also examined. In conclinjon two 

illustrative examples are presented. 

1, Let us examine a system of material points. fndependent Lagrange coordinates 

of this system are designated by 2 1 . ” _ , _2’,,_ Let tile system be constrained by 3 ideal 

nonintegrable linear constraints c,:- r’:re form 

Possible displacements of’ points of the system are determined by variatious St/; of 

Lagrange coordinates Q,, cor?nected by the following relationships 

Equations of motions of nonholonomic systems are obtained in various forms. For the 

sake of definiteness (but without limj rions cf generality) we shall examine the equation 

in the form of Appel 
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Here S = S (ql”, . . . ,qs”; yl’, . . . , Q’; ql, _ . . , yTl. L) is the energy of acceleration, 

Qi * are generalized forces corresponding to coordinates 9 , the variations of which are 

arbitrary; in this connection 8 J(& 1,. . . , n) designate generalized Lagrange forces 

corresponding to coorainates il: j. 

Eqs, (I, 3) , together with equations of constraints (1.1) , represent a simultaneous syst- 

em of k+m = n equations with an equal number of unknowns 4 J (j= 1,. . . ,7~). 
We note that regardless of the form in which the equations of motion of nonholonomic 

systems are taken, in the form of (1.3) or some other form, for obtaining a closed system 
of equations it is necessary to add equations of kinematic constraints to equations of mo- 

tion. This is one of characteristic differences of nonholonomic systems from holonomic 

systems with independent coordinates which determine the specifics of formulation of 

the problem on stability of motion. 

Let us assume that the equations of motion of tile nonholonomic system have some 

particular solution 4i = fi (0, Sj = fj' Ct> 0.4) 
which satisfies initial conditions 

Q.iO = fj (&I), Qio’ = f$o) (1.5) 
We shall compare unperturbed motion (1.4) with perturbed motions of the system 

which are possible for the same forces and constraints but for different initial condi@ons 

4jo = ij (lo) f Ed9 Qjo’ = fj’ (to) + Ej ’ (I.61 

where perturbations E j and c ; are some real constants sufficiently small in absolute 

value, However, in constrast to the case of a holonomic system, perturbations cJ and Sj: 

cannot be taken as arbitrary but must satisfy certain conditions arising from conditions 
due to the nonholonomic character. In fact, substituting (1.6) into (1.1) we shall have 

fr’ Go) f- Er’ = $ bi (Is et(i) 
i=l 

+ ES: lo) vi’ PO) + 41 + br (fs (to) + Ed to) 

Assuming functions b,,i (ql,. . . , q,,, to) and b, (ql,.. . , qn, to) to be holomorphic 
functions of 4 j and expanding them in Taylor series, we obtain 

which connect e j and E G dots designate members higher than first order of smallness 
with respect to perturbations. 

The problem of stability of motion in the sense of Liapunov for nonholonomic systems 
can apparently be formulated in the same marine; as for holonomic systems [ 1 and 2 1 

under the condition that perturbations cJ and 8 j satisfy conditions (1. 7). Consequently 
the problem of stability of motion of a nonholonomic system has the character of the 
problem on conditional stability [ 21. 

If we accept for nonholonomic systems the determination of conditional stability 

given by Liapunov. we can for the solution of problems on stability of motion of non- 
holonomic systems in this manner utilize methods which were worked out in the tnaory of 
stability of holonomic systems. In this case proofs of general theorems on stability and 
instability which form the basis of the first and second method of Liapunov remain the 
same for nonholonomic systems as they are for for holonomic systems. 

2. Let us examine the problem of stability of equilibrium of a system constrained 
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by stationary nonholonomic consrraincs 

and under the action of porentia1 active forces derived from the force function 

ural *..* ,Qn >. 
Xn accordance with the principle of tirtuaf dispkements it is necessary and suffice 

ient for the equilibrium of the system that the force function u has a stationary value 

su= 0 P4 

L,e. in the set of possible displacements &J f the force function in the eq~~ibrium pas- 
ition has a relative local extremum. For holonomic systems the character of this extra 

mum determines, as is well known f$j, the stability or instability of the equilibrium. we 

shall clarify the situation in the case of nonholonomic systems. 

By virtue of (1.2) condition (2,2) is equivalent to the following Eqs, of equflibrium: 

These equatfons can of course also be obtained from Eqs, of moriun (1,3), Since rhe 

number n of unknowns 91 j in Eqs. (2.3) exceeds the number k of equations by the num 
ber M of nonholonomic constraints, the problem of searching for the equilibrium position 

of the nonholo~omic system is generally speaking unde~rmi~ed [S], locations of eqti- 

librium form manifolds of dimensian RO less than ??A Let us examine some point of the 

manifold of equilibrium positions and without loss of generality let us assume that for 

this point qj = 0, $’ = 0 (j = 1, I . ., n) 12.4 

Further we shall assume that the force function U (gr, _,+, &) represents a holomor- 

phic function of variables Q j, In the general case in the vicinity of point (2.4) it has 

the form 

Were Uij, Cij = Cji are constants, while u (Q~?, . . ~ qn) designates the total of term 

of higher than second order of smallness. Taking into account (2.5) Eqs. uf equilibrium 

(2.3) assume the form 

Since it is assumed that point (2.4) belongs to a manifold af equilibrium poaidons, 
the following conditions must be satisfied 

It is apparent that if uy = 0 or br10 =& 0 (i = I,..,, k; r = k Jr I,..._, n), then 
&so all ab = 0. ff the latter conytion is not fulfilled, &is can be achieved by sub- 
stitution of variables U,. = (I @ ZZk _-I?. 4 “Pn) (24 
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In this case if variables U, are again designated through Qr , the force function will 

have the form (2.5) where now all Ui = 0 (i = I,. , . , k). The equations of constraints 

will have the form(2.1),where [S] all brF = 0 (r = k + l,..., n). In the following, 
if for initial variables 4 1’ #O, we shall assume that tbe substitution of variables (2.8) 

has been performed 

Note. In the fulfillment of conditions (2.7) the nonholonomic system may be in 
equilibrium under the .action of forces derived from function u which contains terms 
linear with respect to 4 J. For a holonomic system with independent coordinates g, 

such a case of equilibrium is impossible. 
Let us assume that the functional determinant of the system of Eqs. (2.6) with respect 

to variables CJ~( i = 1, . . ., It) for zero values of variables qj(/’ = 1, - . ., n) has the form 

Here, for brevity, the following notations are introduced 

b r$j = (ab,i / aqj)O (i = 1) . . .) k; j = 1, . . ., 7%; r = k + 1, . . . , n) 

Then the following solution for Eqs. (2.6) exist 

4i = cpi (QEi+rr - - *, Qn) (i = 1, . . .) k) (2.40) 

where C& are some holomorphic functions of Qr which disappear when all qr = 0 

(I’ = k + 1, .**, n)* Since Eqs. (2.1) for qz = 0 (i = 1, . . ., k) have the solution 

qr x c r (r = k + 1, . *. , n) (2.11) 

where C! p are arbitrary constants then, apparently, equilibrium (2.4) will belong to m 
parametric family of solutions (2.10) and (2.11) of equations of motion. 

Solution (2.4) will be taken as the unperturbed solution and its stability will be exam- 
ined: equations of perturbed flow will have the form (1.3). (2.1). Let us examine their 
structure. For this purpose instead of using Eqs. (1.3) it is more convenient to make use 
of equivalent equations in the form of Voronets [ 7J. 

d ae a(@+U) 
-7- dt “qi aqi 

t~,.~ = .$ 0, i Aij(“qj’ (i = 1, . . ., k) 

r=k+l j=l 

Here 
R 

@(Cl,> ' * *I qn; Ql, . . -, skY=+r, aij (t!l, . . e7 QdQi'4j' 

fj=l 

(2.12) 

denotes the kinetic energy of the system r expressed with the aid of Eqs. of constraints 

(2.1) only through independent velocities qi’( i = I,.. . ., k), through which generalized 

impulses 8 r , corresponding to dependent velocities CJ r, are also expressed 

8,(q1, * . -, Qn, Ql', . . ., a’) = g- (r=k+l,...,It) 

Apparently 8, are linear homogeneous forms of velocities Qi in the examined case 

with stationary constraints (2.1). The coefficients A$” are expressed in the following 
manner through the coefficients b,i of the equations of constraints 

Since the coefficienp Ai are antisymmerr.llc with respect to indices 5 and J 
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the following identity is applicable 

~ B,, ~ I::i ‘li“/,’ ” 
/ z/l_ -1 1.j -1 

i. e. terms appearing in the right-hand parts of Eqs. (2.12) have gyroscoplc s;r ,c~‘m:. 

If Eqs. of constraints (X.1) are integrable then all 

_.lij!l) 0 (i.i- I, .,., k; r I, I. .,.. ii) 
. 

and Eqs. (2.12) transform into Lagrange equations in redundant coordinates. In this 

manner terms of nonholonomic character in the right-hand side of Eqs. (2. 12) are equi- 

valent to gyroscopic forces. It is only necessary to keep in mind that these forces in this 

case are quadratic with respect to velocities 41, and if equations of perturbed motion are 

linearized, they will not appear in the latter, i. e. in the first approximation they have no 
effect on the motion of the system. In the particular case of Chaplygin’s systems [8], if 

coordinates CJ p corresponding to eliminated velocities do not enter explicitly into ex- 

pressions of force function U, of coefficients of kinetic energy 11’ and of coefficimts hi 

of constraint equations, tile11 Eqs. (2. 12) take the form of Chaplygin’s equations 

Since these equations can be integrated independently of Eqs. of constraints (2. I), 

for Chaplygin’s systems the problem of stability of motion with respect to certain func- 

tions (lit gi’, t (i =: 1, . . ., k) can be formulated as problem of unconditional stability 

in the sense of Liapunov. 
It is not difficult to see that for stationary constraints and potential forces, Eqs. of 

perturbed motion (1.3) or (2.12) and (2.1) assume the energy integral as 

H = j” -- u = const 01 H = (3 -- Li = const (2.14) 

The kinetic energy of system y (or 0) is a positive definite quadratic form in the vel- 

ocities 4 ; ( or q; ). We note that by virtue of existence of integral (2.14) the position 
of equiIibrium of a nonholonomic system cannot be asymptotically stable under the in- 

fluence of potential forces alone. 
Under certain conditions Lagrange’s theorem of stability of equilibrium is applicable 

to nonholonomic systems. In fact, for point (2.4) let the following conditions be satis- 
fied 

al;: / Bqi = 0 (3.15) 

indicating that the position of equilibrium of the system is a stationary point of the func- 

tion U (gr,. .., q,,). In this connection the function u apparently does not contain terms 
linear in 4 r, i, e. all a, = 0. Under these conditions on the basis of Liapunov’s theorem 

of stability or on the basis of the theorem of stability with respect to a part of variables 
[’ 1, taking as Liapunov’s function the energy of the system H we become convinced that 
for nonholonomic systems Lagrange’s theorem is applicable. 

Theorem 2. 1. If in the vicinity of the location of equilibrium of a nonholonomic 

system the force function u (41,..., 411) is negative definite with respect to variable 

qs (s = I,..., P < n>, then the position of equilibrium is stable with respect to 

& andQ; (j=l,....n). 
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In essence this theorem is obvious. In fact, if nonintegrable constraints coincident 

with the position of equilibrium are placed on a holonomic system in a stable state of 

equilibrium, the stability is not violated. However a nonholonomic system can be in 

stable equilibrium even in cases when the force function in the equilibrium position does 
not have a maximum with respect to coordinates p J, in particular when it contains linear 

terms, Let us see what conclusion about stability of equilibrium can be extiacted in this 

case from the sign of second variation of force function u. 

Utilizing Eqs. (1.2) and taking into account that bVio = 0, we find for point (2.4) 

6vJ = + i c,,8q,bq, 
ij=l 

(2.16) 

Let us examine function v=@- p where @ and fi designate function@ and uif in the 

latterallvariables qr = 0 (r= k + I,..., n), 

@* (QW.9 Q/c, Ql’,..., ai) = @ (QI,.., Q&, o,..., 0, q;... q/J, 

u* (q1.-, 4k) = u tqp.. qa, OP... 0) 

Expansion of function u* in Maclaurin’s series in the vicinity of point (2.4) starll with 

a quadratic form, where 

By virtue of Eqs. of perturbed motion (2.12) in which we set &= 0, the time derivative 

of function I/is 

(2.17) 

This expression is equal to zero with accuracy to terms of not lower than third order 

of smallness with respect to 4 i and 4 ;, at least in cases when the force function Udoes 

not contain linear terms with respect to Q r 

a, = 0 (r = k j-i,. _ ., n) (2.18) 

or when coefficients 4f of Eqs. of constraints (2.1) satisfy conditions 

@=I,..., k;j=l ,a,., k;r=k+l,..., n) (2.19). 

Taking I/as Liapunov’s function, we arrive on the .basis of Liapunov’s theorem on sta- 

bility at the conclusion that the following theorem is valid. 

Theorem 2. 2. If in equilibrium position (2.4) of a nonholonomic system condit- 

ions (2.18) or (2.19) are satisfied and the second variation b2 Uof the force function u 
is negative definite, the position of equilibrium is stable in the first approximation with 
respect to Qi and gJ: 

C or o 11 a r y . When conditions (2.18) or (2.19) are fulfilled the nonholonomic char- 
acter of the system does not have essential significance for small oscillations near the 
equilibrium position. 

Note. A statement about the insignificance of nonholonomic character for small os- 



288 V. V. Rumiantsev 

cillations near the position of equilibrium was shown by Whittaker [3] without any condi- 
tions, even though, from his development it might be seen that he implicity assumed the 

fulfillment of conditions of the form (2.18). In the general case, as wasJirst noted by 

Bottema 141, this statement is not correct. Here the corresponding characteristic dettrm- 
ant will be unsymetricai in contrast to the case of a holonomic system, 

We shall now turn to the examination of the question of instability of equilibrium of 

a nonholonomic system under. the action of potential forces. jet, in an arbitrarily small 

region in the vicinity Of equilibrium position (2. 4), the force function Ube able to assume 

positive values and in the equilibrium position u=o. In this connection it is assumed 

that for a given value of the largest permissible deviation A, positions arbitrarily close to 
the unperturbed position, for which u>C?, are possible with consideration of constraints 
(2.1) placed on the system, 

Let us examine the function 
f; 

lIY;= -‘j/x -ejJi 
i-_r II; 

In the region of small values in absolute magnitude of coordinates qJ and velocities 

LJ ; we select a region cwhich exists under our a~umptio~ for arbitrarily small, in absol- 
ute magnitude, values of Q j and 4 ;, 

ities 
This region cis defined by simultaneous inequal- 

7: 

The total derivative with respect to time of the function w has, by virtue of Eqs. of 

perturbed motion (X12), the form 

Since. constraint&#aced on the system are assumed to be independent of time, the 

kinetic energy of system 0 represents a positive definite function of & . For values of 

cOOrdinates Q J * sufficiently small in absolute magnitude, the function 

will also be positive definite with respect to velocities qi. Then, if in region c Express- 

ion 

(2.2Z) 

will be a positive definite function of hi , the function W" will be a positive definite 
function of 4 i and CJ i in the region 0. in this connection all conditions of Chetaev’s 
theorem on instability wilt he fulfflled. On this basis we conclude that the following 
theorem is valid. 

Theorem 2, 3, If in an arbitrarily small region in the vicinity of the position of 
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equilibrium of a nonbolonomic system the force function u can assume positive values, 
whereby Expression (2.21) in region (2.20) is a positive definite function ofp i , the pas- 

ition of equilibrium is unstable with respect to 4; and 4 1. 

Corollary. If the force function does not depend on coordinates 4 F, the position 
of equilibrium (2.4) of the nonholonomic system is unstable when @J: 

a) the force function u represents some homogeneous form ffP of degreepin variables 

4; (i = 1,..., k) and for arbitrarily small, in absolute magnitude, values of variables Qi 

it can assume positive values or 
b) the force function has the form Li (ql,. .., qk) = u, $- UPtl i- . . . land for arb- 

itrarily small qi (i = I,..., li)it can assume positive values. Here the signs of express- 

ions u and pU, + (p Jr 1)U, f . . . are determined by the form of UP. We proceed 

to the examination of the case when in an arbitrarily small region in the vicinity of the 
equilibrium position the function u* can assume positive values. Let us examine the 

function 

and the region of arbitrarily small, in absolute magnitude, values CJ~ and 4;. ‘rhis region 

is defined by the simultaneous inequalities 

(2.22) 

By virtue of Eqs. (2.12) of perturbed flow in which we take 4 r = 0. the total derivative 
of the function W with respect to time is 

On the basis of Chetaev’s theorem on instability we arrive at the conclusion that the 

following theorem is valid. 

Theorem 2. 4. If the second variation b2uof the force function can assume pos- 
itive values and conditions (2.18) or (2.19) are satisfied, the position of equilibrium is 

unstable. 

3, Let us examine the effect of dissipative forces on stability of equilibrium position 
of a nonholonomic system. In addition to potential forces let dissipative forces also act 
on the system 

Qi” = - af / dqi’ (i = 1,. . ., k) (3.1) 
These forces are derived from a positive definite Rayleigh function 

In this case the equations of perturbed motion of the system near the equilibrium pos- 
ition differ from Eqs. (2.12) only by the addition of terms (3 1) in the tight-hand parts 
of the latter. 

From equations of perturbed flow the following Eq. 
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(3.2, 

follows for the rate of energy dissipation of the system. 

Theorem 3. 1. When conditions of Theorem 2.1 or 2.2 are satisfied. dissipative 

forces do not violate the stability of the equilibrium position of the system. 
Proof. If conditions of Tineorems 2.1 or 2.2 are satisfied, then the vaii6 !cy of this 

statement follows from Liapunov’s theorem on stability, if in the firsr caseH=@ -Il’is taken 

as Liapunov’s function and in the second case I/=3*-u*. Here, instead of Eq. (2.17) we 

will have 
(3.3) 

Theorem 3. 2. If in the expansion of force function u there are no linear terms 
and if in an arbitrarily small region in the vicinity of the equilibrium position of a non, 
holonomic system, the function u and Expression (2.21) are negative definite with res- 

pect to variables qs (S = I,..., k), the equilibrium becomes asymptotically stable 
with respect to variables qa and 4; on addition of dissipative forces. 

Proof. Let us examine the function 

(3.4) 

The positive constant p can always be selected so small that the function I/will be 

positive definite, By virtue of equations of perturbed motion the total derivative with 

respect to time of .function I/ is 

where dots designate terms of no less than third order of smallness with respect to 4 i 

and Q; . For sufficiently small positive fl the function Y* will be negative definite 

( 121. p, 77). Consequently, all conditions of Liapunov’s theorem on asymptotic stability 
are satisfied, which proves the Theorem. 

The proof of this theorem can be presented in a different way. According to Eq. (3.2) 

the total mechanical energy of the system in its perturbed Motion is dissipated until 911 

qi’ (i = 1, . . .) k) becomes equal to zero. However, under the conditions of the 

Theorem this is possible only at the point qi = o (i = I ,.,. , &since from the property of 
Expression (2.21) of having a fixed sign it follows that in the vicinity of the equilibrium 
position the generalized forces oi* # 0, as long as yi f 0 (i = 1, . . ., k). 

Corollary. If the force function does not depend on coordinates &., Expression 

(2.21) takes the form 

i Qi +2&1_ 
i 

, ..* (3.8) 
i=l 

and if uz is a negative definite quadratic form of gl, the equilibrium position becomes 

asymptotically stable on addition of dissipative forces. 

Theorem 3. 3. If in an arbitrarily small region in the vicinity of the equilibrium 
position the quadratic part of function u* is negative definite and conditions (2.18) or 
(2.19) are satisfied, on addition of dissipative forces the position of equilibrium becomes 

asymptotically stable in the first approximation with respect to variables qf a&q;, 

Proof. Let us examine the positive definite function 
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(3.7) 

and its total derivative with respect to time. 

By virtue of equations of perturbed motion in which we shall take Qr = 0 

Dots designate terms of no less thanthird order of smallness with respect qi and 4;. 

For conditions indicated, all conditions of Liapunov’s theorem on asymptotic stability 
are satisfied, which proves our statement, 

Theorem 3. 4. The equilibrium position of a nonholonomic system which is un- 
stable when conditions of Theorems 2.3 or 2.4 are fulfilled, cannot be stabilized through 

dissipative forces. 
P r oo f. Let conditions of Theorem 2. 3 be satisfied. Then in a region of arbitrarily 

small values, in absolute magnitude of ql and c&, we can select a region defined by in- 
equalities (2.20). Initial perturbations are selected in this region, The system left to 

itself will move then according to Eq. (3.2). It follows from this that the total mechan- 
ical energy of the system, being negative at the initial moment of time, will decrease 

until all qi’ (i = 1, . . . . n) will become zero. However, in region (2.20). Expression 
(2.21) has a fixed sign, as a result of which generalized forces &* do not become zero 

at any point of region (2.20) with the exception of the origin of coordinates 41 = 0. 

Then on the basis of inequality 

e-u~eQ-uQ<O (3.9) 
we arrive at the conclusion that a nonholonomic system eventually will leave any arb- 

itrarily small region in the vicinity of equilibrium position (2.4). The proof of instab- 

ility in case of fulfillment of conditions of Theorem 2.4 is analogous. 

4, Examples. 1. Let us examine a heavy homogeneous body of revolution with 

a spherical base resting on a horizontal absolutely rough surface. The center of gravity 

0 of the body is taken as tbe origin of tne system of coordinates &J&, This system of 
coordinates is rigidly connected with the body. The axis Zof this system is oriented up- 

ward along the axis of revolution of the body. 

The coordinate of the geometrical center 01 of the spherical base is designated by 

C&l on this axis. The radius of the base is designated by a. The horizontal plane will 
be taken as the plane 5 ?J in the stationary system of coordinates 5 qc with the axis 6 
pointing vertically upward. 

The position of the body will be determined by coordinates 5 and q of its point of 

contact with the plane and Euler’s angles 8 , $ and cp The potential energy of the body 
is 

I’ = Mg (a - a, CDs 0) 

where M is the mass of the body, g is the gravitational acceleration. The position of 

equilibrium of the body on the surface are determined from Eq. 

av / a9 = Mga, sin 0 = 0 * 

In the position of equilibrium let 8 = 0. 
Since 

[CW / XJ’]s,O = Mgur, W 
8 - = MgcQ (ez + . . .) 

ae 
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this position of equilibrium is, according to Theorem 2.1, stable with respect to 5: ‘ri’ 
8 l ,Cp l , $ l and 8, if the center of gravity of the body is located below point 4 (a 1 > G ) 

and unstable according to Theorem 2.3’if the center of gravity is located above point 

01 ( al c 0). The dissipative force - a0 * sets the stability according to Theorem 3-2 

as far as asymptotic stability in the case ~1 > 0. 
2. Let us examine the problem of Kerkhoven-Vithoff on stability of equilibrium of 

two heavy homogeneous bodies which nave the sfiape of hemispheres. One of these, wini 

radius RI, rests with its spherical surface on the horizontal plane, and the other, with 

radius R2, rests on the top flat base of the first body. The surfaces of contact are con- 

sidered absolutely rough. Retaining the nomenclature ( [3], p. 250) we take as Lagrange’s 
coordinates of the system the quantities 02, B3, Ylj ~2~ b2, cl, a and ]j, u, 1). 

Conditions of contact of the first body with the plane and the second body with the 

first have the form 
c ~zz RI - CxIi, V R3 + 1, - /zy:s i‘i. I) 

while conditions of nonholonomic character have the form 

a’ = % (vZ - %vd a2‘ - %v12 -t R,Y, - U yI’ (4.2) 

B’ = - R2 (yl i- %vd a,’ -I- I& (1 - liz (y12 + 832) - hy,) - MS3 
III Lagrange’s coordinates. with accuracy to a constant, the potential energy of the 

system has the form 

v = l/2 (M, + M,)gl, (Cl2 + V) -IT fif,g Iv - %x8 i- 
-t l/21, (yla + (jay - *ia (R, + 1, - I,) (Cl2 -t V)l -1 . . . 

Eqs. of equilibrium (2.3) 
Ma&cl (vz - a,~,) + M,gR,b, (rr +,~21’2) == 0 

M&3, - Mggb, [R, (1 - ‘/a h2 + 8~~) - fbvz) - &,I =: 0 

M&y, - Mzgq (&A~ -k R2~3 - 12) = 0 

[MIX, - &B - M2 (R, - l,)]gb, == 0 

(4.3) 

(4.4) 

permit the solution 
&gu + M&,c, - M,g (R, - 1,) ~1 = 0 

pa = yt = 6, = cl=azfj=O (4.5) 

For position of equilibrium (4.5) function E/does not have a minimum and conditions 

of Lagrange’s theorem are not satisfied, Let us apply Theorem 2.2. Linearizing Eqs. of 
constraints (4.2) and integrating we will have 

o = - (R, - 12) ~1, B = (& - 12) I% (4.6) 

Substituting (4.6) into Expression (4 3) and taking into account that 

II = */a Ri ( i = >, 2), we will obtain 

v+ = g / 16 [(3M,R, - 5MaRa) (cl2 + bs2) - IOMsRs (w, + U%l + 

+ 3MzR, (Vi2 + I%31 + . . . (4.7) 

The function I/* will be a positive definite function of variables fls, yl, b3 and cl 

under the condition 
9 MIR, > 4OM,R, (4.5) 

which according to Theorem 1.2 in the first approximation is the condition of stability 

(4.5) with respect to indicated variables and generalized velocities. 
On addition of dissipative forces, derived from quadratic function of Rayleigh which 
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is positive definite with respect to a!‘, fit,‘, yl’, n?‘, b,’ and cl’, the position of equil- 

ibrium (4.5) becomes in this case asymptotiCally stabIe in the first approximation. 

In the case when 
9lJZ,R, < 40d14R, (4.9) 

function V + can acquire negative values. According to Theorem 2.3, the position of 

equilibrium (4. 5) will be unstable. 
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